

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science (Hons) in Applied Mathematics			
QUALIFICATION CODE:	08BSHM	LEVEL:	8
COURSE CODE:	ADC801S	COURSE NAME:	ADVANCED CALCULUS
SESSION:	JULY 2022	PAPER:	THEORY
DURATION:	3 HOURS	MARKS:	100

SUPPLEMENTARY / SECOND OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER:	DR. DSI IIYAMBO	
MODERATOR:	PROF. OD MAKINDE	

INSTRUCTIONS

- 1. Attempt all the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations.
- 3. All written work must be done in black or blue inked, and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Question 1.

Consider the equation PV = knT, where k and n are constants. Show that

$$\frac{\partial V}{\partial T}\frac{\partial T}{\partial P}\frac{\partial P}{\partial V}=-1.$$

[10]

Question 2.

Find the local extreme values and the saddle points of the function $f(x,y) = x^2 + 2xy + 3y^2$.

Question 3.

Use the method of Lagrange multipliers to find the minimum and maximum values of the function $f(x,y) = 2x^2 + y^2 + 2$, where x and y lie on the ellipse C given by $x^2 + 4y^2 - 4 = 0$. [15]

Question 4.

Let $\mathbf{F} = (2xz + y^2)\mathbf{i} + 2xy\mathbf{j} + (x^2 + 3z^2)\mathbf{k}$.

- a) Determine whether F is a conservative vector field. If it is, find a potential function for F.
- b) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve given by $\mathbf{r}(t) = t^2 \mathbf{i} + (t+1)\mathbf{j} + (2t-1)\mathbf{k}$, where $0 \le t \le 1$.

[19,7]

Question 5.

Evaluate $\int_C xyz^2 dS$, where C is the line segment joining (-1, -3, 0) to (1, -2, 2) [10]

Question 6.

Let f be a differentiable function of x, y and z, and let $\mathbf{F}(x, y, z) = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$, where P, Q and R are differentiable functions of x, y and z. Prove that

$$\operatorname{div}(f\mathbf{F}) = f\operatorname{div}\mathbf{F} + \mathbf{F} \cdot \nabla \mathbf{f}.$$

[10]

Question 7.

Use Green's Theorem to evaluate $\oint_C (3y - e^{\sin x}) dx - (7x + \sqrt{y^4 + 1}) dy$, where C is the circle of radius 9 centred at the origin. [9]

Question 8.

Evaluate the integral
$$\iiint_B 8xyz \, dV$$
 over the box $B = [2, 3] \times [1, 2] \times [0, 1]$. [8]